
CS510 Computer Architecture

Lecture 8:Dynamic Branch Prediction

Soontae Kim

Spring 2019

School of Computing, KAIST

Reduction of Control Hazards Stalls with Dynamic

Branch Prediction

Å So far we have dealt with control hazards in instruction pipelines by:

ï Assuming that the branch will not be taken (i.e stall cycles when branch is
taken).

ï Branch delay slot and canceling branch delay slot. (ISA support needed)

ï Reducing the branch penalty by resolving the branch early in the pipeline

ÅBranch penalty if branch is taken = stage resolved - 1

ï Compiler-based static branch prediction encoded in branch instructions

ÅPrediction is based on program profile or branch direction

Å ISA support needed.

How to further reduce the impact of branches on pipelined processor
performance ?

Å Dynamic Branch Prediction:

ï Hardware-based schemes that utilize run-time behavior of branches to
make dynamic predictions:

Å Branch Target Buffer (BTB):

ï To provide branch target addresses fast in the fetch stage

Dynamic Branch Prediction

Å Use the run-time behavior of branches to make more accurate

predictions than possible using static prediction.

Å Some of the proposed dynamic branch prediction mechanisms include:

ï One-level or Bimodal: Uses a Branch History Table (BHT), a table of

usually two-bit saturating counters which is indexed by a portion of the

branch instruction address (low-order address bits). (First proposed mid

1980s)

ï Two-Level Adaptive Branch Prediction. (First proposed early 1990s),

ï Hybrid or Tournament Predictors: Uses a combination of two or more

(usually two) branch prediction mechanisms (1993).

Å To reduce the stall cycles resulting from correctly predicted taken

branches to zero cycles, a Branch Target Buffer (BTB) that includes the

addresses of conditional branches that were taken along with their

targets is added to the fetch stage.

Branch Target Buffer (BTB)
Å Effective branch prediction requires the target address of the branch at an early

pipeline stage.

Å One can use additional adders to calculate the target, as soon as the branch

instruction is decoded. This would mean that one has to wait until the ID stage

and target instruction would be fetched with a one-cycle penalty (this was done in

the enhanced MIPS pipeline)

Å To avoid this problem one can use a Branch Target Buffer (BTB), where the

addresses of taken branch instructions are stored together with their target

addresses.

Å Some designs store n prediction bits as well, implementing a combined BTB and

Branch history Table (BHT).

Å Instructions are fetched from the target address stored in the BTB in case the

branch is predicted-taken and found in BTB. After the branch has been resolved

the BTB is updated. If a branch is encountered for the first time a new entry is

created in BTB once it is resolved.

Å Branch Target Instruction Cache (BTIC): A variation of BTB which caches

also the branch target instruction in addition to its address. This eliminates the

need to fetch the target instruction from the instruction cache or from memory.

Basic Branch Target Buffer (BTB)

IF

Fetch instruction from

instruction memory (I -L1 Cache)

Branch Targets

Branch Inst. Address

0 = NT = Not Taken

1 = T = Taken

One more stall to update BTB

Penalty = 1 + 1 = 2 cycles

Branch Penalty Cycles

Using A Branch-Target Buffer (BTB)

Assuming one more stall cycle to update BTB

Penalty = 1 + 1 = 2 cycles

Base Pipeline Taken Branch Penalty = 1 cycle

No Not Taken Not Taken 0

Not Taken

Basic Dynamic Branch Prediction

ÅSimplest method: (One-Level or Bimodal)

ïA branch prediction buffer or Branch History Table (BHT) indexed by

low-order address bits of the branch instruction.

ïEach buffer location (or BHT entry) contains one bit indicating whether

the corresponding branch was recently taken

Åe.g 0 = not taken , 1 =taken

ïAlways mispredicts in first and last loop iterations.

ÅTo improve prediction accuracy, two-bit prediction is used:

ïPrediction must miss twice before it is changed.

ïTwo-bit prediction is a specific case of n-bit saturating counter

incremented when the branch is taken and decremented when the

branch is not taken.

ï Two-bit prediction counters are usually used based on observations that

the performance of two-bit BHT prediction is comparable to that of n-bit

predictors.

...

BHT Entry: One Bit

0 = NT = Not Taken

1 = T = Taken

Low-order bits

of Branch

Inst. Address

One-Level Bimodal Branch Predictors

Decode History Table (DHT)

N Low Bits of

Table has 2N entries.

0 0

0 1

1 0

1 1

High bit determines

branch prediction

0 = NT = Not Taken

1 = T = Taken

Example:

For N =12

Table has 2N = 212 entries

= 4096 = 4k entries

Number of bits needed = 2 x 4k = 8k bits

Sometimes referred to as

Pattern History Table (PHT)

or

Branch History Table (BHT)

Common one-level implementation

Not Taken

(NT)

Taken

(T)

2-bit saturating counters

One-Level Bimodal Branch Predictors

Branch History Table (BHT)

High bit determines

branch prediction

0 = NT= Not Taken

1 = T = Taken

Not a common one-level implementation

0 0

0 1

1 0

1 1

Not Taken

(NT)

Taken

(T)

2-bit saturating counters

