
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

5th

Edition

Chapter 4

The Processor

Fall 2018

Soontae Kim

School of Computing, KAIST

Announcement

◼ Project #2

◼ Due on Nov. 9 (tomorrow)

◼ Studying pipelining with simulator

Chapter 4 — The Processor — 2

1-bit and 2-bit branch predictors

Chapter 4 — The Processor — 3

Iter# 1-bit pred. 2-bit pred. Outcome

Init 0 01 na

1 1 10 T both mispredict

2 1 11 T both correct

3 1 11 T both correct

.

.

9 1 11 T both correct

10 0 10 N both mispredict

Inner loop executed again

1 1 11 T 1-bit mispred, 2-bit correct

2 1 11 T

1-bit pred.

0: NT

1: T

2-bit pred.

00, 01: NT

10, 11: T

Chapter 4 — The Processor — 4

Instruction-Level Parallelism (ILP)

◼ Pipelining: executing multiple instructions in
parallel

◼ To increase ILP
◼ Deeper pipeline

◼ Less work per stage  shorter clock cycle

◼ Multiple issue
◼ Replicate pipeline stages  multiple pipelines

◼ Start multiple instructions per clock cycle

◼ CPI < 1, so use Instructions Per Cycle (IPC)

◼ E.g., 4GHz 4-way multiple-issue

◼ 16 BIPS, peak CPI = 0.25, peak IPC = 4

◼ But dependencies reduce this in practice

§
4
.1

0
 P

a
ra

lle
lis

m
 v

ia
 In

s
tru

c
tio

n
s

Chapter 4 — The Processor — 5

Multiple Issue

◼ Static multiple issue

◼ Compiler groups instructions to be issued together

◼ Packages them into “issue slots”

◼ Compiler detects and avoids hazards

◼ Dynamic multiple issue

◼ CPU examines instruction stream and chooses

instructions to issue each cycle

◼ Compiler can help by reordering instructions

◼ CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 6

Speculation

◼ “Guess” what to do with an instruction

◼ Start operation as soon as possible

◼ Check whether guess was right

◼ If so, complete the operation

◼ If not, roll-back and do the right thing

◼ Common to static and dynamic multiple issue

◼ Example

◼ Speculate on branch outcome

◼ Roll back if path taken is different

Chapter 4 — The Processor — 7

Compiler/Hardware Speculation

◼ Compiler can reorder instructions

◼ e.g., move load before branch

◼ Can include “fix-up” instructions to recover

from incorrect guess

◼ Hardware can look ahead for instructions

to execute

◼ Buffer results until it determines they are

actually needed

◼ Flush buffers on incorrect speculation

Chapter 4 — The Processor — 8

Static Multiple Issue

◼ Compiler groups instructions into “issue

packets”

◼ Group of instructions that can be issued on a

single cycle

◼ Determined by pipeline resources required

◼ Think of an issue packet as a very long

instruction

◼ Specifies multiple concurrent operations

◼  Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 9

Scheduling Static Multiple Issue

◼ Compiler must remove some/all hazards

◼ Reorder instructions into issue packets

◼ No dependencies within a packet

◼ Possibly some dependencies between

packets

◼ Pad with nop if necessary

Chapter 4 — The Processor — 10

MIPS with Static Dual Issue

◼ Two-issue packets

◼ One ALU/branch instruction

◼ One load/store instruction

◼ 64-bit aligned

◼ ALU/branch, then load/store

◼ Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 11

MIPS with Static Dual Issue

Chapter 4 — The Processor — 12

Hazards in the Dual-Issue MIPS

◼ More instructions executing in parallel

◼ EX data hazard

◼ Forwarding avoided stalls with single-issue

◼ Now can’t use ALU result in load/store in same packet

◼ add $t0, $s0, $s1
load $s2, 0($t0)

◼ Split into two packets, effectively a stall

◼ Load-use hazard

◼ Still one cycle use latency, but now two instructions

◼ More aggressive scheduling required

Chapter 4 — The Processor — 13

Scheduling Example

◼ Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

◼ IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 14

Dynamic Multiple Issue

◼ “Superscalar” processors

◼ CPU decides whether to issue 0, 1, 2, …

instructions each cycle

◼ Avoiding structural and data hazards

◼ Avoids the need for compiler scheduling

◼ Though it may still help

◼ Code semantics ensured by the CPU

Chapter 4 — The Processor — 15

Dynamic Pipeline Scheduling

◼ Allow the CPU to execute instructions out

of order to avoid stalls

◼ But commit result to registers in order

◼ Example

lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

◼ Can start sub while addu is waiting for lw

Chapter 4 — The Processor — 16

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorder buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Chapter 4 — The Processor — 17

Register Renaming

◼ Reservation stations and reorder buffer
effectively provide register renaming

◼ On instruction issue to reservation station

◼ If operand is available in register file or
reorder buffer
◼ Copied to reservation station

◼ If operand is not yet available
◼ It will be provided to the reservation station by a

functional unit

◼ Register names are renamed to reservation station
number associated with the functional unit

Chapter 4 — The Processor — 18

Speculation

◼ Predict branch and continue issuing

◼ Don’t commit until branch outcome

determined

◼ Load speculation

◼ Avoid load and cache miss delay

◼ Predict the effective address

◼ Predict loaded value

◼ Load before completing outstanding stores

◼ Bypass stored values to load unit

◼ Don’t commit load until speculation cleared

Chapter 4 — The Processor — 19

Why Do Dynamic Scheduling?

◼ Why not just let the compiler schedule

code?

◼ Not all stalls are predicable

◼ e.g., cache misses

◼ Can’t always schedule around branches

◼ Branch outcome is dynamically determined

◼ Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 20

Does Multiple Issue Work?

◼ Yes, but not as much as we’d like

◼ Programs have real dependencies that limit ILP

◼ Some dependencies are hard to eliminate

◼ e.g., pointer aliasing

◼ Some parallelism is hard to expose

◼ Limited instruction window size during instruction

issue (# of RSs)

◼ Memory delays and limited bandwidth

◼ Hard to keep pipelines full

The BIG Picture

