M<:OMPUTER ORGANIZATION AND DESIG?® st

The Hardware/Software Interface Edition

Chapter 4

The Processor

Fall 2018

Soontae Kim
School of Computing, KAIST

Announcement

Project #2
Due on Nov. 9 (tomorrow)
Studying pipelining with simulator

Chapter 4 — The Processor — 2

1-bit and 2-bit branch predictors

Iter# 1-bit pred. 2-bit pred. Outcome

Init 0 01 na 1-bit pred
1 1 10 T both mispredict 0: NTp '
2 1 11 T both correct 1j T
3 1 11 T both correct '

2-bit pred.
9 1 11 T both correct (1)8 cl)i _IFI T
10 0 10 N both mispredict T

Inner loop executed again

1 1 11 T 1-bit mispred, 2-bit correct
2 1 11 T

Chapter 4 — The Processor — 3

Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions in
parallel

To increase ILP
Deeper pipeline
Less work per stage = shorter clock cycle
Multiple issue
Replicate pipeline stages = multiple pipelines
Start multiple instructions per clock cycle
CPIl < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue
16 BIPS, peak CPI =0.25, peak IPC =4
But dependencies reduce this in practice

Chapter 4 — The Processor — 4

Multiple Issue

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue

CPU examines instruction stream and chooses
Instructions to issue each cycle

Compiler can help by reordering instructions

CPU resolves hazards using advanced techniques at
runtime

Chapter 4 — The Processor — 5

Speculation

“Guess” what to do with an instruction
Start operation as soon as possible

Check whether guess was right
If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue

Example

Speculate on branch outcome
Roll back if path taken is different

Chapter 4 — The Processor — 6

Compiler/Hardware Speculation

Compliler can reorder instructions
e.g., move load before branch

Can include “fix-up” instructions to recover
from Incorrect guess

Hardware can look ahead for instructions
to execute

Buffer results until it determines they are
actually needed

Flush buffers on incorrect speculation

Chapter 4 — The Processor — 7

Static Multiple Issue

Compiler groups instructions into “issue
packets”

Group of instructions that can be issued on a
single cycle
Determined by pipeline resources required

Think of an issue packet as a very long
Instruction

Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 8

Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies within a packet

Possibly some dependencies between
packets

Pad with nop If necessary

Chapter 4 — The Processor — 9

MIPS with Static Dual Issue

Two-issue packets
One ALU/branch instruction
One load/store instruction

64-bit aligned
ALU/branch, then load/store
Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM wWB

n+8 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM WB
n+ 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 10

MIPS with Static Dual Issue

— Y
o =_ > M] —
u -
4 j Y
> ~ ALU—| >
e
- » M
a | Registers u .
80000180 - pcil,. | Instruction —» N .
memory [| [> 9 |
> ” > 1 Write
> data
Data
ALUl—| | I I
> memory
Address
M
> = M
> > u . "
—_— - L= X . _
o N — —

MORGAN KAUFMANN

; M(Chapter 4 — The Processor — 11

Hazards in the Dual-Issue MIPS

More instructions executing in parallel

EX data hazard

Forwarding avoided stalls with single-issue

Now can’t use ALU result in load/store in same packet

add , $s0, $s1
load $s2, 0(5t0)

Split into two packets, effectively a stall

Load-use hazard
Still one cycle use latency, but now two instructions

More aggressive scheduling required

Chapter 4 — The Processor — 12

Scheduling Example

Schedule this for dual-issue MIPS

Loop: Tw , 0(%s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sD) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($s1) 1

addi $s1, $s1,-4 2
addu $tO0, , $s2 3
bne $s1, $zero, Loop |[sw $t0, 4($sl) 4

IPC =5/4 =1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 13

Dynamic Multiple Issue

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, ...
Instructions each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help
Code semantics ensured by the CPU

Chapter 4 — The Processor — 14

Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out
of order to avoid stalls

But commit result to registers in order

Example
Tw , 20(%$s2)
addu $t1, , $t2

sub $s4, $s4, $t3
sTti $t5, $s4, 20

Can start sub while addu is waiting for Iw

Chapter 4 — The Processor — 15

Dynamically Scheduled CPU

/ Preserves

dependencies

Instruction fetch
and decode unit

In-order issue

P

Y Y

Reservation | | Reservation Reservation || Reservation | <~ Hold pending
station station U station station operands

Functional || o Integer Floating Load- | oyt-of-order execute

units " point store

—
Results also sent
l to any waiting
reservation stations
— Commit In-order commit

Reorder buffer for unit

register writes

g Can supply

operands for
issued instructions

/g\ M(Chapter 4 — The Processor — 16

MORGAN KAUFMANN

Register Renaming

Reservation stations and reorder buffer
effectively provide register renaming

On Instruction Issue to reservation station

If operand Is available in register file or
reorder buffer
Copied to reservation station

If operand Is not yet available
It will be provided to the reservation station by a
functional unit

Register names are renamed to reservation station
number associated with the functional unit

Chapter 4 — The Processor — 17

Speculation

Predict branch and continue issuing

Don’t commit until branch outcome
determined

Load speculation

Avoid load and cache miss delay
Predict the effective address
Predict loaded value
Load before completing outstanding stores
Bypass stored values to load unit

Don’t commit load until speculation cleared

Chapter 4 — The Processor — 18

Why Do Dynamic Scheduling?

Why not just let the compiler schedule
code?

Not all stalls are predicable
e.g., cache misses

Can’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

Chapter 4 — The Processor — 19

Does Multiple Issue Work?

Yes, but not as much as we'd like
Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate
e.g., pointer aliasing
Some parallelism is hard to expose

Limited instruction window size during instruction
Issue (# of RSs)

Memory delays and limited bandwidth
Hard to keep pipelines full

Chapter 4 — The Processor — 20

