
[CS311] Computer Organization, Fall 2018, Prof. Soontae Kim

1

Homework #2

TA in charge: Wonyoung Lee

(E-mail: wy_lee@kaist.ac.kr)

Place to submit: The submission box in front of N1 #922

Due date: Nov. 20th (Tue.), 2018, 23:59:00)

Extended due date: Nov. 21th (Wed.), 2018, 23:59:00)

(*. After the due date, there will be a 50% penalty on your score)

(*. After the extended due date, submission is not allowed.)

 Solve the below problems, and write a report with the answers.

 Both English and Korean are fine for your report.

 Do not submit your homework on KLMS; Please submit it in the submission box.

mailto:wy_lee@kaist.ac.kr

[CS311] Computer Organization, Fall 2018, Prof. Soontae Kim

2

1. In this exercise, we examine how data dependences affect execution in the basic 5-

stage pipeline described in Section 4.5. Problems in this exercise refer to the following

sequence of instructions:

 I1: or r1, r2, r3
 I2: or r2, r1, r4
 I3: or r1, r1, r2

Also, assume the following cycle times for each of the options related to forwarding:

Without Forwarding With Full Forwarding
With ALU-ALU

Forwarding Only

150ps 200ps 180ps

a. Indicate every dependence that incurs hazards.

 (Answer example: Dependence on register r?? from I?? to I??)

b. Assume there is no forwarding in this pipelined processor. Indicate hazards and

add the minimum number of nop instructions to eliminate them.

 (Answer example:

 Ix: XX r1, r2, r3
 NOP // Delay to avoid data hazard on rXX from Ix
 Iy: YY r2, r1, r4

NOP // Delay to avoid data hazard on rXX from Iy
 Iz: XX r1, r1, r2

c. Assume there is full forwarding. Indicate hazards and add the minimum number

of nop instructions to eliminate them.

d. What is the total execution time of this instruction sequence without forwarding

and with full forwarding? What is the speedup achieved by adding full

forwarding to a pipeline that had no forwarding?

e. Add the minimum number of nop instructions to this code to eliminate hazards

if there is ALU-ALU forwarding only (no forwarding from the MEM to the EX

stage).

f. What is the total execution time of this instruction sequence with only ALU-ALU

forwarding? What is the speedup over a no-forwarding pipeline?

[CS311] Computer Organization, Fall 2018, Prof. Soontae Kim

3

2. In this exercise, we examine how resource hazards, control hazards, and Instruction Set

Architecture (ISA) design can affect pipelined execution. Problems in this exercise refer

to the following fragment of MIPS code:

 sw r16,12(r6)
 lw r16,8(r6)
 beq r5,r4,Label # Assume r5!=r4
 add r5,r1,r4
 slt r5,r15,r4

a. For this problem, assume that all branches are perfectly predicted (this

eliminates all control hazards) and that no delay slots are used. If we only have

one memory (for both instructions and data), there is a structural hazard every

time we need to fetch an instruction in the same cycle in which another

instruction accesses data. To guarantee forward progress, this hazard must

always be resolved in favor of the instruction that accesses data. What is the

total execution time of this instruction sequence in the 5-stage pipeline that

only has one memory?

b. For this problem, assume that all branches are perfectly predicted (this

eliminates all control hazards) and that no delay slots are used. If we change

load/store instructions to use a register (without an offset) as the address, these

instructions no longer need to use the ALU. As a result, MEM and EX stages

can be overlapped and the pipeline has only 4 stages. Change this code to

accommodate this changed ISA. Assuming this change does not affect clock

cycle time, what speedup is achieved in this instruction sequence?

c. Assuming stall-on-branch and no delay slots, what speedup is achieved on this

code if branch outcomes are determined in the ID stage, relative to the

execution where branch outcomes are determined in the EX stage?

[CS311] Computer Organization, Fall 2018, Prof. Soontae Kim

4

Assume that individual pipeline stages have the following latencies:

IF ID EX MEM WB

160ps 100ps 120ps 150ps 80ps

d. Given these pipeline stage latencies, repeat the speedup calculation from 2.b,

but take into account the (possible) change in clock cycle time. When EX and

MEM are done in a single stage, most of their work can be done in parallel. As

a result, the resulting EX/MEM stage has a latency that is the original MEM

stage latency plus 10 ps needed for the work that could not be done in parallel.

e. Given these pipeline stage latencies, repeat the speedup calculation from 2.c,

taking into account the (possible) change in clock cycle time. Assume that the

latency ID stage increases by 100% and the latency of the EX stage decreases

by 20 ps when branch outcome resolution is moved from EX to ID.

f. Assuming stall-on-branch and no delay slots, what is the new clock cycle time

and execution time of this instruction sequence if beq address computation is

moved to the MEM stage? What is the speedup from this change? Assume

that the latency of the EX stage is reduced by 20 ps and the latency of the

MEM stage is unchanged when branch outcome resolution is moved from EX

to MEM.

[CS311] Computer Organization, Fall 2018, Prof. Soontae Kim

5

3. The importance of having a good branch predictor depends on how often conditional

branches are executed. Together with branch predictor accuracy, this will determine

how much time is spent stalling due to mispredicted branches. In this exercise, assume

that the breakdown of dynamic instructions into various instruction categories is as

follows:

R-Type BEQ JMP LW SW

40% 15% 15% 25% 5%

Also, assume the following branch predictor accuracies:

Always-Taken Always-Not-Taken 2-Bit

35% 65% 90%

a. Stall cycles due to mispredicted branches increase the CPI. What is the extra

CPI due to mispredicted branches with the Always-Taken predictor? Assume

that branch outcomes are determined in the EX stage, that there are no data

hazards, and that no delay slots are used.

b. Repeat 3.a for the “Always-Not-Taken” predictor.

c. Repeat 3.a for the 2-Bit predictor.

d. With the 2-Bit predictor, what speedup would be achieved if we could convert

half of the branch instructions in a way that replaces a branch instruction with

an ALU instruction? Assume that correctly and incorrectly predicted instructions

have the same chance of being replaced.

e. With the 2-Bit predictor, what speedup would be achieved if we could convert

half of the branch instructions in a way that replaced each branch instruction

with two ALU instructions? Assume that correctly and incorrectly predicted

instructions have the same chance of being replaced.

f. Some branch instructions are much more predictable than others. If we know

that 80% of all executed branch instructions are easy-to-predict loop-back

branches that are always predicted correctly, what is the accuracy of the 2-Bit

predictor on the remaining 20% of the branch instructions?

