
Fall 2018

CS101 – Variables and Basic Data Types
Lecture 3

School of Computing, KAIST

Interpreter vs compiler

CS101 Copyright (c) School of Computing, KAISTFall 2018 2

Interpreter Compiler

Translates program one statement at a time.
Scans the entire program and translates it as a
whole into machine code.

It takes less amount of time to analyze the source
code but the overall execution time is slower.

It takes large amount of time to analyze the
source code but the overall execution time is
comparatively faster.

No intermediate object code is generated, hence
are memory efficient.

Generates intermediate object code which
further requires linking, hence requires more
memory.

Continues translating the program until the first
error is met, in which case it stops. Hence
debugging is easy.

It generates the error message only after
scanning the whole program. Hence debugging is
comparatively hard.

Programming language like Python, Ruby use
interpreters.

Programming language like C, C++ use compilers.

Roadmap

Last week we learned

• Conditionals and while Loops

This week we will learn

• Objects

• Types

• Variables

• Methods

• Tuples

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 3

Objects

Programs work with data. Every piece of data in a Python program is called an

object.

Objects can be very small (the number 3) or very large (a digital photograph).

Every object has a type. The type determines what you can do with an ob-

ject.

The Python Zoo:

Imagine there is a zoo inside your Python interpreter.

Every time you create an object, an animal is born.

What an animal can do depends on the type (kind) of animal:

Birds can fly, fish can swim, elephants can lift weights, etc.

When an animal is no longer used, it dies (disappears).

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 4

Making objects

You can create objects as follows:

Numbers: Simply write them:

13
3.14159265
-5
3 + 6j

Strings: (a piece of text)

Write text between quotation marks ("and 'are both okay):

"CS101 is wonderful"
'The instructor said: "Well done!" and smiled'

Booleans: (truth values)

Write True or False.

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 5

Complex number

Making more objects

Complicated objects are made by calling functions that create them:

from cs1robots import *
Robot()

from cs1media import *
load_picture("photos/geowi.jpg")

A tuple object is an object that contains other objects.

To create a tuple, write objects separated by commas (usually in parenthesis):

(3, 2.5, 7)
("red", "yellow", "green")

(20100001, "Hong Gildong")

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 6

Different animals: Types

Every object has a type. The type determines what the object can do, and

what you can do with the object. For instance, you can add two numbers, but

you cannot add two robots.

The Python interpreter can tell you the type of an object:

>>> type(3)

<class 'int'>
>>> type(3.1415)

<class 'float'>
>>> type("CS101 is fantastic")

<class 'str'>
>>> type(3 + 7j)

<class 'complex'>
>>> type(True)

<class 'bool'>

Integer number: int

Floating point number: float

String: str

Complex number: complex

Boolean: bool

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 7

More types

Types of more complicated objects:

>>> type(Robot())

<class 'cs1robots.Robot'>
>>> type((3, -1.5, 7))

<class 'tuple'>
>>> type(load_picture("geowi.jpg"))

<class 'cs1media.Picture'>

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 8

Names

Objects can be given a name:

message = "CS101 is fantastic"

n = 17

hubo = Robot()
pi = 3.1415926535897931
finished = True

img = load_picture("geowi.jpg")

We call a statement like n = 17an assignment, because the name n is

assigned to the object 17.

In the Python zoo, the name is a sign board on the animal’s cage.

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 9

Variable names

The rules for variable and function names:

• A name consists of letters, digits, and the underscore _.

• The first character of a name should not be a digit.

• The name should not be a keyword such as def, if, else, or while.

• Upper case and lower case are different: Pi is not the same as pi.

Good:

• my_message = "CS101 is fantastic"

• a13 = 13.0

Bad:

• more@ = "illegal character"

• 13a = 13.0

• def = "Definition 1"

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 10

Variables

Names are often called variables, because the meaning of a name is variable:

the same name can be assigned to different objects within a program:

n
n

=
=

17
"Seventeen"

n = 17.0

The object assigned to a name is called the value of the variable. The value

can be changed over time.

To indicate that a variable is empty, we use the special object None (of class

’NoneType’):

n = None

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 11

Methods

What objects can do depends on the type of object: a bird can fly, a fish can

swim.

Objects provide methods to perform these actions.

The methods of an object are used through dot-syntax:

>>> hubo = Robot()
>>> hubo.move()
>>> hubo.turn_left()

>>> img = load_picture("geowi.jpg")
width and height in pixels>>> print(img.size())

(58, 50)

>>> img.show() # display the image

>>> b = "banana"

>>> print(b.upper())

BANANA

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 12

Operators

For numbers, we use the operators +, -, *, /, //,%, and **.

a ** b= ab

>>> 2**16

65536

Remainder after division

>>> 7 % 3

1

//is integer division (division without fractional part):

>>> 13.0 // 4.0

3.0
>>> 9 / 7

1.2857142857142858

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 13

Expressions

An expression is a combination of objects, variables, operators, and function

calls:

3.0 * (2 ** 15 - 12 / 4) + 4 ** 3

The operators have precedence as in mathematics:

1. exponentiation **

2. multiplication and division *, /, //,%

3. addition and subtraction +, -

When in doubt, use parentheses!

e.g., a is not a/2*pi
2π

Use a/(2*pi)or a/2/pi.

All operators also work for complex numbers.

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 14

String expressions

The operators +and *can be used for strings:

>>> "Hello" + "CS101"

'HelloCS101'

>>> "CS101 " * 8

'CS101 CS101 CS101 CS101 CS101 CS101 CS101 CS101 '

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 15

Boolean expressions

A boolean expression is an expression whose value has type bool. They are

used in if and while statements.

The operators ==, !=, >, <, <=and >=return boolean values.

>>> 3 < 5

True
>>> 27 == 14

False
>>> 3.14 != 3.14

False
>>> 3.14 >= 3.14

True
>>> "Cheong" < "Choe" T

rue
>>> "3" == 3

False

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 16

Equality – don't confuse with =

Logical operators

The keywords not, and and or are logical operators:

not True == False

not False == True

False and False == False

False and True == False

True and False == False

True and True == True

False or False == False

False or True == True

True or False == True

True or True == True

Careful: If the second operand is not needed, Python does not even compute

its value.

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 17

Tuples

A tuple is an object that contains other objects:

>>> position = (3.14, -5, 7.5)
>>> profs = ("Ko", "Kim", "Myaeng", "Choi", "Choi")

A tuple is a single object of type tuple:

>>> print(position, type(position))

(3.14, -5, 7.5) <class 'tuple'>

We can “unpack” tuples:

>>> x, y, z = position

>>> print(x)

3.14

Packing and unpacking in one line:

>>> a, b = ("aa", "bb")
>>> a, b = b, a

>>> print(b)

aa
Fall 2018 CS101 Copyright (c) School of Computing, KAIST 18

Colors

Colors are often represented as a tuple with three elements that specify the

intensity of red, green, and blue light:

red = (255, 0, 0)
blue = (0, 0, 255)
white = (255, 255, 255)
black = (0, 0, 0)
yellow = (255, 255, 0)
purple = (128, 0, 128)

from cs1media import *
img = create_picture(100, 100, purple)

img.show()

img.set_pixels(yellow)
img.show()

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 19

Colors

A digital image of width w and height h is a rectangular matrix with h rows an

d

w columns:

0, 0 1, 0 2, 0 3, 0 4, 0

0, 1 1, 1 2, 1 3, 1 4, 1

0, 2 1, 2 2, 2 3, 2 4, 2

We access pixels using their x and y coordinates.

x is between 0 and w-1, y is between 0 and h-1.

>>> img.get(250, 188)

(101, 104, 51)

>>> img.set(250, 188, (255, 0, 0))

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 20

red, green, blue triple

For loops

A for-loop assigns integer values to a variable:

>>> for i in range(4):

... print(i)

0

1
2
3

>>> for i in range(7):
... print ("*" * i)

*
**

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 21

Negative of a photo

from cs1media import *

img = load_picture("../photos/geowi.jpg")

w, h = img.size()

for y in range(h):
for x in range(w):

r, g, b = img.get(x, y)
r, g, b = 255 - r, 255 - g, 255 - b
img.set(x, y, (r, g, b))

img.show()

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 22

Black & white photo

from cs1media import *
threshold = 100
white = (255, 255, 255)
black = (0, 0, 0)

img = load_picture("../photos/yuna1.jpg")

w, h = img.size()

for y in range(h):
for x in range(w):

r, g, b = img.get(x, y)
v = (r + g + b) // 3 # average of r,g,b

if v > threshold:

img.set(x, y, white)
else:

img.set(x, y, black)

img.show()

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 23

Objects with two names

The same object can have more than one name:

hubo = Robot("yellow") hubo.mo

ve()

ami = hubo

ami.turn_left() hubo.mov

e()

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 24

yellow robot

hubo

ami

Objects with two names

The same object can have more than one name:

hubo = Robot("yellow") hubo.mo

ve()

ami = hubo

ami.turn_left() hubo.mo

ve()

hubo = Robot("blue") hubo.mo

ve()

ami.turn_left()

ami.move()

Fall 2018 CS101 Copyright (c) School of Computing, KAIST 25

yellow robot

hubo

ami

blue robot

CS101 Copyright (c) School of Computing, KAISTFall 2018

Questions?

26

